Enhanced Dielectric Environment Sensitivity of Surface Plasmon-Polariton in the Surface-Barrier Heterostructures Based on Corrugated Thin Metal Films with Quasi-Anticorrelated Interfaces

نویسندگان

  • Alexander V. Korovin
  • Nicolas L. Dmitruk
  • Sergii V. Mamykin
  • Viktor I. Myn’ko
  • Mariya V. Sosnova
چکیده

A new approach to the formation of a 1D planar periodicity on the front of a plasmonic photodetector based on Schottky barrier is proposed. It allows forming a 1D planar periodicity with corrugation at the "metal/environment" interface by laser interference lithography using embedded chalcogenide wires, whereas the "metal/semiconductor" interface is flat that leads to reducing of surface recombination losses at Shottky barrier in contrary to the conventional technology for forming corrugated metal films on the semiconductor surface requiring chemical etching of the semiconductor substrate. In this case, the metal film interfaces are quasi-anticorrelated as opposed to correlated ones in the conventional technology. It has been theoretically predicted that the polarization sensitivity (T p /T s ) strongly depends on the cross-sectional shape of chalcogenide wires and reaches a value of 8. Furthermore, it was theoretically found that the maximum sensitivity of the signal intensity on the environment refractive index is three times larger than for an equivalent structure obtained by conventional technology. Comparison of experimental data for the photocurrent in the case of two types of correlation between metal film interfaces demonstrates good agreement with numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface plasmon-polariton resonances in metal-coated polycarbonate gratings

In this article a study of surface plasmon resonance (SPR) is presented using a diffraction grating to couple light on the dielectric–metal interface. A polycarbonate surface relief gratings obtained from commercially available DVD-R stampers are used as substrates and are subsequently coated with silver and gold thin films (with physical thickness d = 15-25 nm) . The presence of SPR is experim...

متن کامل

Excitation of a surface plasmon with an elastomeric grating

We report on a new method to excite surface plasmon polaritons on a thin metal slab surface using an elastomeric grating which is fabricated by replica molding technique. The grating is placed on the metal surface which creates a periodic perturbation on the surface matching the momentum of the incident light to that of the surface plasmon. The conformal contact between the metal surface and th...

متن کامل

Plasmonic Excitations of 1D Metal-Dielectric Interfaces in 2D Systems: 1D Surface Plasmon Polaritons

Surface plasmon-polariton (SPP) excitations of metal-dielectric interfaces are a fundamental light-matter interaction which has attracted interest as a route to spatial confinement of light far beyond that offered by conventional dielectric optical devices. Conventionally, SPPs have been studied in noble-metal structures, where the SPPs are intrinsically bound to a 2D metal-dielectric interface...

متن کامل

Surface plasmon-polariton mediated light emission through thin metal films.

The emission of light by sources in close proximity to a thin metallic film is dominated by surface plasmon-polariton modes supported by that film. We explore the nature of the modes and examine how the energy lost to such modes can be recovered. Both cross-coupled and coupled SPPs are presented as a means of transferring energy across a thin metal film. These modes are then scattered and there...

متن کامل

A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device.

Surface plasmon resonance (SPR) of nanostructured thin metal films (so-called nanoplasmonics) has attracted intense attention due to its versatility for optical sensing and chip-based device integration. Understanding the underlying physics and developing applications of nanoplasmonic devices with desirable optical properties, e.g. intensity of light scattering and high refractive index (RI) se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017